

THE NEXT HALF-

 CENTURY OF RQD FROM A DRILL-QUALITY AND Q-SYSTEMS PERSPECTIVENick Barton, NB\&A, Oslo

CONTENT

- Some words about Bieniawski
- RMR and Q have their differences, but NB-ZTB, 2008
- Some words about Deere
- In defence of RQD (contra Jv of Palmstrøm)
- Cecil (1970), RQD, number of joint sets in Q development
- Q-histograms and 'central place' of RQD
- Qtвм........ Qslope........QH2O in brief (all contain RQD)
- RQD and Vp (Sjøgren et al. 1979)
- Competition for GSI ? (includes RQD)

RMR and Q - Setting records straight

The RMR and Q rock mass classifications were independent developments in 1973 and 1974, whose common purpose was to quantify rock mass characteristics previously based on qualitative geological descriptions. They were originally developed for assisting with the rock engineering design of tunnels. The value of thorough geological exploration was never disputed, indeed it was always emphasised. In addition, it was

After 35 years of use throughout the tunnelling world, the RMR and Q classifications have proved themselves on numerous projects. They still face misconceptions however, as reflected in recent articles in T\&T International. Here, Nick Barton, of Nick Barton \& Associates, Norway, and ZT Bieniawski, of Bieniawski Design Enterprises, USA, clear common misunderstandings and provide the "ten commandments" for proper use of these rock mass classification systems

- A 2008 cooperation with Dick Bieniawski - finally! Mainly to address misplaced critical discussion from 'beam-theorist' Pells in Australia, and from Schubert/Reidmuller of Austria (as told in Goodman TTI article) about rock mass classification for tunnels.
- A 2016 article in a Canadian journal by the same Pells of Australia has proposed 'putting RQD to rest'.
- In fact these authors, which strangely had Bieniawski as a co-author, recommended using GSI to estimate RQD. This really does not sound like Bieniawski!
'For Q-system see Bieniawski,

2.T. Bieniawski 1989'....! (Hudson and Harrison)

ALSO - A FOND MEMORY OF DICK FROM ISTANBUL................... 'close encounter of the third kind' with a belly-dancer!

And from TEHRAN (ARMS)...'this is the last lecture of my career' (2008)........thanks to the Brazilians and ITA it was not!

These two equations (there are dozens) are in 'good agreement' when RMR89 = 65, and $Q=10$.

Maybe avoidance of

 zero and negative RMR is a good reason for choosing the $\log _{10}$ version?
The Rock Quality Designation (RQD) Index in Practice

REFERENCE: Deere, D. U. and Deere, D. W., "The Rock Quality Designation (RQD) Index in Practice," Rock Classification Systems for Engineering Purposes, ASTM STP 984, Louis Kirkaldie, Ed., American Society for Testing and Materials, Philadelphia, 1988, pp. 91-101.

ABSTRACT: The Rock Quality Designation (RQD) index was introduced 20 years ago at a time when rock quality information was usually available only from geologists' descriptions and the percent of core recovery. The RQD is a modified core recovery percentage in which unrecovered core, fragments and small pieces of rock, and altered rock are not counted so as to downgrade the quality designation of rock containing these features. Although originally developed for predicting tunneling conditions and support requirements, its application was extended to correlation with in situ rock mechanical properties and, in the 1970s, to forming a basic element of several classification systems. Its greatest value, however, remains as an exploratory tool where it serves as a red flag to identify low-RQD zones which deserve greater scrutiny and which may require additional borings or other exploratory work. Case history experience shows that the RQD red flag and subsequent investigations often have resulted in the deepening of foundation levels and the reorientation or complete relocation of proposed engineering structures, including dam foundations, tunnel portals, underground caverns, and power facilities.

Redrawn in Palmstrøm, 2005
for measuring RQD is illustrated in Fig. 1. The RQD index is an index of rock quality in that problematic rock that is highly weathered, soft, fractured, sheared, and jointed is counted against the rock mass. Thus it is simply a measurement of the percentage of "good" rock recovered from an interval of a borehole.

'counted against'.....i.e. discounted

'serves as a red flag to identify low RQD zones which deserve greater scrutiny'

Do not penalise a core

 because it has a parallel jointcausing break-up

GEOTECHNICS \& CONCRETE ENGINEERING (H.K.) LTD.
PROJECT: Contract NEX/2108 Ground Investigation Works for Express Rail Link
HOLE NO. : $2108 / \times R L / D 44 /$ DEPTH : 0.00 M TO 68.65 M BOX: 1 OF 20 DATE OF PHOTOGRAPH: 23-1-2009

107m (with another core box) of definitively zero RQD.

Maybe:

$Q=10 / 20 \times 1 / 4 \times 0.5 / 5 \approx 0.01$

$R Q D=0$ or 100%
(the ' 100 ' value is a nice demonstration of the importance of hole orientationactually three joint sets in this Hong Kong granite)

YouTube figure

'Take RQDw as the average of many measurements'
(OR WE CAN UTILIZE RQD AS AN ANISOTROPIC PARAMETER)

Palmstrøm, 2001....CRITIQUE OF RQDALSO AS A WAY OF SUPPORTING HIS Jv
$10 / 15 \times 1 / 2 \times 0.5 / 2.5=0.07$
$10 / 9 \times 1.5 / 1 \times 0.66 / 1=1.1$
$100 / 6 \times 1.5 / 1 \times 1 / 1=10$
POSSIBLE Q-VALUE ESTIMATES
$100 / 2 \times 2 / 1 \times 1 / 1=100$

WHO IS INTERESTED IN ROCK

 THAT IS THIS MASSIVE?Palmstrøm, 2001 critique of RQD. Due to his ignoring the number of joints in different orientations, his poor opinion of RQD is misplaced.
(Is his focus on dimension-stone quarries? where 10 m joint spacing is so liked?)

- Another Palmstrøm, 2005 attempt to discredit RQD, and promote his volumetric joint count Jv - which was referenced/supported in Barton et al. 1974.
- Rock masses are seldom so uniform (unless sedimentary).....but treating RQD as an anisotropic parameter has ADVANTAGES compared to Jv! (For instance, use of tunnel-oriented RQDo is recommended in Qтвм prognosis method - where it is essential).

SOME SUGGESTED CORRELATIONS OF RQD

 with rock mass deformation modulus and strength

Coon and Merrit, 1970

Zhang and Einstein, 2004

DEVELOPMENT OF THE Q-SYSTEM IN 1973

NB was/is INDEBTED TO ONE OF DEERE'S
PH.D. STUDENTS: CECIL, 1970 - for approx. 90 Norwegian and Swedish case records
AND CECIL'S EMPHASIS THAT NUMBER OF JOINT SETS WAS IMPORTANT.....not just his professor's RQD!

Cecil, 1970 case records

(this selection reproduced in Barton, Lien, Lunde, 1974)

[^0]

Cecil, 1970 case records

(this selection reproduced in Barton, Lien, Lunde, 1974)

Fig. 8. Sketches of the six case records described in Table 9, after Cecil (1970)

Table 9. Classification and Prediction of Support for Six of the Case Records Described by Cecil (1970)

3. Access tunnel, Stensijifalleet Hydre.

 Sure in schistoses metagreywacke.
Smady, ravely join flings. Planar
smooth surface joins. 1 joint set

	2. Large overbreak in intrados, some 3. Railrace tunnel, Stensiofalliet Hydro. N. Sweden (ref. Cecil 1970).						1.7	1.6	3.7	
\%	1. 10 m length, strongly sheared granitc, very tight vertical structure. joints. 1 joint set, $5-30 \mathrm{~cm}$ spacing. Insignificant water inflow. 2. Stable, minor overbreak, no roof falls. 3. Collector tunnel, Mo i Rana Hydro. N. Norway (ref. Cecil 1970).			None						Catcgory 0
		5.7	15			${ }_{1.5}^{1.0}{ }^{1.0}{ }_{2.5}$				Note: Very tight structure may imply higher stress,
										$\begin{aligned} & \text { i.e. } R R F=1.0 \\ & \text { Hence } Q=30 \end{aligned}$
							12	1.6	5.0	
$\begin{aligned} & 74 \\ & 75 \end{aligned}$	1. Approx. 2 km length, massive granite, widely spaced, tight, vertical ioints. Pranar, smoon-stintece unaltered joints. 1 joint set, $1-3 \mathrm{n}$ spacing, Insignificant water inflow. 2. No overbreak in chambers, but 3. Waste water tratment Waste water treatment plant, 190). Käppala. Sweden (ref. Cecil	12.5	≤ 100	None in chambers	${ }^{100} 2$	${ }_{1.0}^{1.0}{ }^{1.0}{ }_{1.0}$	50	1.3	9.2	$\begin{aligned} & \text { Catcoryory } 0,9 \\ & =\text { NONE or sb } \end{aligned}$
										$\begin{aligned} & \text { Catrgory } 14 \\ & =141.5-2 \mathrm{~m} \end{aligned}$
				Bolts at intersections	${ }_{2 \times 3}$	${ }_{1.0}^{1.0}{ }_{1.0}^{1.0}$	16.7	1.0	12.0	
77	1. 300 m length, massive gnciss, few joints. Planar, rough-surfaced, un- altered joints. $>3 \mathrm{~m}$ spacing, Insig. nificant water inflow. 2. Minor overbreak, no falls or slides.			50 spot bolts 300 m of chamber	100	$5 \quad 1.0$				Category 0,5 $=$ None or sb
		24.5	18		1.0	1.02 .5				
	3. Wine and liquor storage rooms. Stockholm (ref. Cecil 1970).						200	1.3	15.4	

Note: Right-hand column "Roof Support Recommendation" is obained from Tables 11, 12, 13, and 14 .
cy: $\mathrm{S}=$ shotcrete, $\mathrm{B}=$ systematic bolting, $\mathrm{sb}=$ spot bolting. $\mathrm{CCA}=$ cast concrete arches, $\mathrm{mr}=$ mesh reinforced, $\mathrm{sr}=$ stecl reinforced
olt spacing is given in metres. - Sbotcrete or concrete thickness is given in centimeter

Table 9. Classification and Prediction of Support for Six of the Case Records Described by Cecil (1970)

Case No.	1. DESCRIPTION OF ROCK MASS 2. Nature of instability 3. Purpose of excavation, location, reference	SPAN m	Height m	Depth m	Support used	$R Q D$	${ }^{J_{f}}$	$J_{S R F}$	Q	ESR	SPAN/ ESR m	Roof support reconmendation
60	1. 20 m length, 1 m wide zone of sheared granite with clay seams (non-softening) slide boundary is a thin $(<1 \mathrm{~cm})$ clay seam and thinly sheared material that lie in contact with massive rock. Planar, slickensided joints. 1 joint ser, 5- 30 cm spacing. Insgnificant inflow of water. See note, case 56. 2. Wedgeshaped roof fall. 3. Headrace tunnel. Stensjofallet Hydro. N. Sweden (ref. Cecil 1970).	3.9	4.3	85	Rock bolts, and shotcrete	80	0.5	$\begin{aligned} & 1.0 \\ & 2.5 \end{aligned}$	1.3	1.6	3.7	$\begin{aligned} & \text { Catcgory } 21 \\ & =B 1 \mathrm{~m} \\ & +S 2.5 \mathrm{~cm} \end{aligned}$

SUMMARIZED DETAIL OF ONE OF CECIL, 1970 CASE RECORDS - AND QSYSTEM INTERPRETATION

An early version of ' Q ' in 1973 (Note: RQD assumed - obviously)

RQD HAS A PERMANENT ROLE IN Q, Qтвм, Q slope, Q нго

$$
Q=\frac{R Q D}{J n} \times \frac{J r}{J a} \times \frac{J w}{S R F}
$$

Hutchinson and Diederichs, 1996

SO WHAT IS THE ‘Q-system’ ?

- Hellemici Society Soil Mech./Geotech.
- engineerss may not be faniliano with ' Q '

As a briefest introduction:

Q means rock mass quality.
Q consists of ratings for six parameters.

$$
\mathrm{Q}=\frac{\mathrm{RQD}}{\mathrm{~J}_{\mathrm{n}}} \times \frac{\mathrm{J}_{\mathrm{r}}}{\mathrm{~J}_{\mathrm{a}}} \times \frac{\mathrm{J}_{\mathrm{W}}}{\mathrm{SRF}}=(\text { 'Block size') } \times(\text { 'friction') } \times \text { ('active stress') }
$$

BRAZILIAN HYDROPOWER PROJECT COLLAPSE IN FAULT LOWEST END OF THE ROCK MASS QUALITY SCALE. $Q \approx \underline{10 / 20 \times 1 / 8 \times 0.5 / 20}$
i.e. <0.001

THE FIRST TWO PAIRS OF PARAMETERS HAVE DIRECT PHYSICAL MEANING:

RQD / Jn = relative block size
$\mathrm{Jr} / \mathrm{Ja}=$ frictional strength ($\approx \mu$)
Jw / SRF = effects of water, faulting, strength/stress ratio, squeezing or swelling (an 'active stress' term)

Q-classes with respective RQD distributions and Q -ranges:
$0.1-1,1-4,4-10,10-40$
(part of 340 km of core logging at mine, by 12 to 15 engineering geologists)

Demonstrates central role played by RQD in (> 40 km of core)

Q IS ONLY MASS DESCRIPTION EXERCISE

Q-histogram method of recording data.

RQD is

frequently the most variable parameter

Q-slope

Case Study 3: Q-slope mining application

Local	RQD $(\%)$	Jn	Jr	Ja	0-factor	Jwice	SRFa	SRFb	SRFc	Q-slope	$\boldsymbol{\beta}$ (slope angle ${ }^{\circ}$)
1	$10-25$	6	1	4	0.5	0.5	2.5	1	N/A	0.0729	$\mathbf{4 2}$
2	$10-25$	6	1	3	0.75	0.5	2.5	2	N/A	0.1458	48
3	$25-50$	9	2	3	0.75	0.5	2.5	2	N/A	0.4166	$\mathbf{5 7}$

- RQD improves with depth
- Orientation factor improves with depth (bedding)
$2 Q_{\text {slope }}=0.14$,
Bench Face Angle $=45^{\circ}$

Qtbм

Note $A R$ estimation for 24 hrs, 1 week, 1 month

Important to use RQD as a directional parameter (when needed)

Figure A20. Locations U1. to U8 Safiemvc mostly pear Brannstasion.

A selection of the 300+ locations which were Q-logged

Summing
 the raw
 data

Input-data screen for assumed Class 1 rock mass

Qн2о

Q_{c}	0.1	1	10	100
Lugeon	10	1	0.1	0.01
$\mathrm{~K}(\mathrm{~m} / \mathrm{s}) \approx$	10^{-6}	10^{-7}	10^{-8}	10^{-9}
$\mathrm{~V}_{\mathrm{p}}(\mathrm{km} / \mathrm{s})$	2.5	3.5	4.5	5.5

Typical trends (of permeability) if no clay.

No clay present:
$L \approx 1 / Q_{c}$
For hard, jointed, clay-free, rock masses)
(1 Lugeon $\approx 10^{-7} \mathrm{~m} / \mathrm{s} \approx 10^{-14} \mathrm{~m}^{2}$ for water at $20^{\circ} \mathrm{C}$)
$Q_{c}=R Q D / J n \times J r / J a \times J w / S R F \times \sigma_{\mathrm{c}} / 100$
(standard equation, normalized by $\sigma_{c} / 100$)
General case, with or without clay, with depth or stress allowance, and consideration of joint wall strength JCS
$Q_{\text {H2O }}=$ RQD/Jn $\times \underline{\text { Ja/Jr }} \times \mathrm{Jw} /$ SRF $\times 100 / J C S$
$K \approx 0.002 /\left(Q_{H 20} D^{5 / 3}\right) \mathrm{m} / \mathrm{s}$

USUAL RANGE OF K at DAM SITES

Depth (m)

Example of $Q_{H 2 O}$ estimation: Weak, well-jointed rock at 100 m depth with a low assumed joint-wall-compression-strength JCS of 10 MPa :

Regular Q -value $=$
$\frac{50}{9} \times \frac{1.5}{4} \times \frac{0.66}{1}$
$=1.4$, i.e. 'poor quality'
$\mathrm{Q}_{\mathrm{H}_{2} \mathrm{o}}=\frac{50}{9} \times \frac{4}{1.5} \times \frac{0.66}{1} \times \frac{100}{10}=98$
$K \approx\left(\frac{2}{1000 \times 98 \times 100^{5 / 3}}\right)=9 \times 10^{-9} \mathrm{~m} / \mathrm{s}$
(Quite low permeability despite the extensively jointed nature of this rock mass, due to nearly closed, compressible, clay-coated joint walls).

RQD and seismic velocity Vp

ROCK MASS QUALITY $Q=\frac{R Q D}{\mathrm{Jn}} \times \frac{\mathrm{Jr}}{\mathrm{Ja}} \times \frac{\mathrm{Jw}}{\mathrm{SRF}}$

Sjøgren et al. 1979: RQD/Fm-1/Vp
NB added Q-value scale, 1995: hard rocks. (120 km ref. seis., 2.2 km core)

Below: NB, 1995: general case

HOEK-BROWN
 GSI-BASED ESTIMATION

(AN ALTERNATIVE, WITH RQD INCLUDED)

$$
\begin{aligned}
& E_{m}(G P a)=\left(1-\frac{D}{2}\right) \sqrt{\frac{\sigma_{i}}{100}} \times 10^{(G S I-10) / 40} \\
& \sigma_{c m}^{\prime}=\sigma_{c i} \times \frac{\left(m_{b}+4 s-a\left(m_{b}-8 s\right)\right)\left(m_{b} / 4+s\right)^{a-1}}{2(1+a)(2+a)} \\
& \varphi^{\prime}=a \sin \left[\frac{6 a m_{b}\left(s+m_{b} \sigma_{3 n}^{\prime}\right)^{a-1}}{2(1+a)(2+a)+6 a m_{b}\left(s+m_{b} \sigma_{3 n}^{\prime}\right)^{a-1}}\right] \\
& c^{\prime}=\frac{\sigma_{c i}\left[(1+2 a) s+(1-a) m_{b} \sigma_{3 n}^{\prime}\right]\left(s+m_{b} \sigma_{3 n}^{\prime} a^{a-1}\right.}{(1+u)(2+a) \sqrt{1+\left(6 a m_{b}\left(s+m_{b} \sigma_{3 n}^{\prime}\right)^{a-1}\right) /((1+a)(2+a))}} \\
& \text { where } \\
& \quad \sigma_{3 n}=\sigma_{3 \text { max }}^{\prime} / \sigma_{c i}\left(+\mathrm{GSI}+a+s+m_{\mathrm{b}} \text { relations }\right)
\end{aligned}
$$

$$
\begin{aligned}
& E_{m} \approx 10 \times Q_{c}^{1 / 3} \\
& \sigma_{c m} \approx 5 \gamma Q_{c}^{1 / 3} \\
& \varphi \approx \tan ^{-1}\left(\frac{J_{r}}{J_{a}} \times \frac{J_{w}}{1}\right) \\
& c \approx\left(\frac{R Q D}{J_{n}} \times \frac{1}{S R F} \times \frac{\sigma_{c}}{100}\right)
\end{aligned}
$$

FOR THOSE WHO ARE SUSPICIOUS OF BLACK-BOX EQUATIONS -
 THERE ARE TRANSPARENT ALTERNATIVES......also with RQD!

CC and FC from $\mathrm{Q}_{\mathrm{c}}=\mathrm{Q} \times \sigma_{c} / 100$:
Cut Q c into two halves \rightarrow ' c ' and ' φ '

$Q c=R Q D / J n \times J r / J a \times J w / S R F \times \sigma c / 100)$

$C C=$ cohesive strength (the component of the rock mass requiring shotcrete)

FC = frictional strength (the component of the rock mass requiring bolting).

$$
C C=\frac{R Q D}{J_{n}} \times \frac{1}{S R F} \times \frac{\sigma_{c}}{100}
$$

$$
\mathrm{FC}=\tan ^{-1}\left(\frac{\mathrm{Jr}}{\mathrm{Ja}} \times \mathrm{JW}\right)
$$

$$
\begin{aligned}
& c^{\prime}=\frac{\sigma_{c i}\left[(1+2 a) s+(1-a) m_{b} \sigma_{3 n}^{\prime}\right]\left(s+m_{b} \sigma_{3 n}^{\prime}\right)^{a-1}}{(1+u)(2+a) \sqrt{\left.1+\left(6 a m_{b}\left(s+m_{b} \sigma_{3 n}^{\prime}\right)^{a-1}\right) /(1+a)(2+a)\right)}} \\
& \hline C C \quad " c^{\prime \prime} \approx\left(\frac{R Q D}{J_{n}} \times \frac{1}{S R F} \times \frac{\sigma_{c}}{100}\right) \\
& \hline \phi^{\prime}=\operatorname{asin}\left[\frac{6 a m_{b}\left(s+m_{b} \sigma_{3 n}^{\prime}\right)^{a-1}}{2(1+a)(2+a)+6 a m_{b}\left(s+m_{b} \sigma_{3 n}^{\prime 3}\right)^{a-1}}\right] \\
& \hline \text { TC } \quad " \phi^{\prime \prime} \approx \tan ^{-1}\left(\frac{J_{r}}{J_{a}} \times \frac{J_{W}}{1}\right)
\end{aligned}
$$

GSI-based

 algebra for ' c ' and ' ϕ ' contrasted with> Q-based 'empiricism

Note: shotcrete needed when low CC, bolting needed when low FC.

RQD	J_{n}	$\mathrm{~J}_{\mathrm{r}}$	J_{a}	J_{w}	SRF	Q	σ_{c}	Q_{c}	FC°	CC MPa	$\mathrm{V}_{\mathrm{p}} \mathrm{km} / \mathrm{s}$	$\mathrm{E}_{\text {mass }} \mathrm{GPa}$
100	2	2	1	1	1	100	100	100	63°	50	5.5	46
90	9	1	1	1	1	10	100	10	$\mathbf{4 5}^{\circ}$	10	4.5	22
60	12	1.5	2	0.66	1	2.5	50	1.2	$\mathbf{2 6}^{\circ}$	2.5	3.6	10.7
30	15	1	4	0.66	2.5	0.13	33	0.04	$\mathbf{9}^{\circ}$	0.26	2.1	3.5

Four rock masses with successively reducing character: lower RQD, more joint sets, more weathering, lower UCS, more clay.

Low CC -shotcrete preferred

Low FC - bolting preferred

[^0]: Fig. 7. Sketches of the six case records described in Table 8, after Cecil (1970)

