

Nick Barton, NB&A, Oslo

CONTENT

- Some words about Bieniawski
- RMR and Q have their differences, but NB-ZTB, 2008
- Some words about Deere
- In defence of RQD (contra Jv of Palmstrøm)
- Cecil (1970), RQD, number of joint sets in Q development
- Q-histograms and 'central place' of RQD
- QTBM...... Qslope......QH2O in brief (all contain RQD)
- RQD and Vp (Sjøgren et al. 1979)
- Competition for GSI ? (includes RQD)

RMR and Q - Setting records straight

he RMR and Q rock mass classifications were independent developments in 1973 and 1974, whose common purpose was to quantify rock mass characteristics previously based on qualitative geological descriptions. They were originally developed for assisting with the rock engineering design of tunnels. The value of thorough geological exploration was never disputed, indeed it was always emphasised. In addition, it was

After 35 years of use throughout the tunnelling world, the RMR and Q classifications have proved themselves on numerous projects. They still face misconceptions however, as reflected in recent articles in T&T International. Here, Nick Barton, of Nick Barton & Associates, Norway, and ZT Bieniawski, of Bieniawski Design Enterprises, USA, clear common misunderstandings and provide the "ten commandments" for proper use of these rock mass classification systems

- A 2008 cooperation with Dick Bieniawski finally! Mainly to address misplaced critical discussion from 'beam-theorist' Pells in Australia, and from Schubert/Reidmuller of Austria (as told in Goodman TTI article) about rock mass classification for tunnels.
- A 2016 article in a Canadian journal by the same Pells of Australia has proposed 'putting RQD to rest'.
- In fact these authors, which strangely had Bieniawski as a co-author, recommended using GSI to estimate RQD. This really does not sound like Bieniawski!

'For Q-system see Bieniawski, 1989'....! (Hudson and Harrison)

ALSO - A FOND MEMORY OF DICK – FROM ISTANBUL...... 'close encounter of the third kind' with a belly-dancer!

And from TEHRAN (ARMS)...'this is the last lecture of my career' (2008).....thanks to the Brazilians and ITA it was not!

'Proof' that RMR and Q are different, though may 'correlate' in central areas of quality.

These two equations (there are dozens) are in 'good agreement' when RMR89 = 65, and Q = 10.

Maybe avoidance of zero and negative RMR is a good reason for choosing the log₁₀ version?

D. U. Deere¹ and D. W. Deere²

The Rock Quality Designation (RQD) Index in Practice

REFERENCE: Deere, D. U. and Deere, D. W., "The Rock Quality Designation (RQD) Index in Practice," *Rock Classification Systems for Engineering Purposes, ASTM STP 984*, Louis Kirkaldie, Ed., American Society for Testing and Materials, Philadelphia, 1988, pp. 91–101.

ABSTRACT: The Rock Quality Designation (RQD) index was introduced 20 years ago at a time when rock quality information was usually available only from geologists' descriptions and the percent of core recovery. The RQD is a modified core recovery percentage in which unrecovered core, fragments and small pieces of rock, and altered rock are not counted so as to downgrade the quality designation of rock containing these features. Although originally developed for predicting tunneling conditions and support requirements, its application was extended to correlation with *in situ* rock mechanical properties and, in the 1970s, to forming a basic element of several classification systems. Its greatest value, however, remains as an exploratory tool where it serves as a red flag to identify low-RQD zones which deserve greater scrutiny and which may require additional borings or other exploratory work. Case history experience shows that the RQD red flag and subsequent investigations often have resulted in the deepening of foundation levels and the reorientation or complete relocation of proposed engineering structures, including dam foundations, tunnel portals, underground caverns, and power facilities.

From Deere and Deere, 1988

Redrawn in Palmstrøm, 2005

for measuring RQD is illustrated in Fig. 1. The RQD index is an index of rock quality in that problematic rock that is highly weathered, soft, fractured, sheared, and jointed is counted against the rock mass. Thus it is simply a measurement of the percentage of "good" rock recovered from an interval of a borehole.

'counted against'.....i.e. discounted

'serves as a red flag to identify low RQD zones which deserve greater scrutiny'

Do not penalise a core because it has a parallel joint causing break-up

107m (with another core box) of definitively zero RQD.

Maybe: Q = 10/20 x 1/4 x 0.5/5 ≈ 0.01

RQD = 0 or 100%

(the '100' value is a nice demonstration of the importance of hole orientationactually three joint sets in this Hong Kong granite)

YouTube figure

'Take RQDw as the average of many measurements'

(OR WE CAN UTILIZE RQD AS AN ANISOTROPIC PARAMETER)

Palmstrøm, 2001....CRITIQUE OF RQDALSO AS A WAY OF SUPPORTING HIS Jv

```
10/15 \times 1/2 \times 0.5/2.5 = 0.07
10/9 \times 1.5/1 \times 0.66/1 = 1.1
100/6 \times 1.5/1 \times 1/1 = 10
100/2 \times 2/1 \times 1/1 = 100
```

POSSIBLE Q-VALUE ESTIMATES

THAT IS THIS MASSIVE?

Palmstrøm, 2001 critique of RQD. Due to his ignoring the number of joints in different orientations, his poor opinion of RQD is misplaced.

(Is his focus on dimension-stone quarries? where 10m joint spacing is so liked?)

- Another Palmstrøm, 2005 attempt to discredit RQD, and promote his volumetric joint count Jv – which was referenced/supported in Barton et al. 1974.
- Rock masses are seldom so uniform (unless sedimentary).....but treating RQD as an anisotropic parameter has ADVANTAGES compared to Jv! (For instance, use of tunnel-oriented RQD₀ is recommended in Qтвм prognosis method – where it is essential).

SOME SUGGESTED CORRELATIONS OF RQD with rock mass deformation modulus and strength

Coon and Merrit, 1970

Zhang and Einstein, 2004

Zhang, 2010

$\sigma_{\text{cm}}/\sigma_{\text{c}}$

DEVELOPMENT OF THE Q-SYSTEM IN 1973

NB was/is INDEBTED TO ONE OF DEERE'S PH.D. STUDENTS: CECIL, 1970 – for approx. 90 Norwegian and Swedish case records..... AND CECIL'S EMPHASIS THAT NUMBER **OF JOINT SETS WAS IMPORTANT.....not** just his professor's RQD!

Cecil, 1970 case records

(this selection reproduced in Barton, Lien, Lunde, 1974)

Fig. 7. Sketches of the six case records described in Table 8, after Cecil (1970)

Cecil, 1970 case records

(this selection reproduced in Barton, Lien, Lunde, 1974)

Fig. 8. Sketches of the six case records described in Table 9, after Cecil (1970)

15C 0.	1. 2. 3.	DESCRIPTION OF ROCK MASS Nature of instability Purpose of excavation, location, reference	SPAN m	Height m	Depth m	Support used	RQD Jn	J _r Ja	Jw SRF	Q	ESR	SPAN/ ESR m	Roof Support Recommenda- tion
	1. 2. 3.	50 m length of closely spaced, tight diagonal joints in leptite. Planar, smooth joints. 1 joint set, 5—30 cm, spacing. No water present. Minor overbreak when blasting. Tailtace tunnel, Seiteware Hydro.	9	9	140	None	70 2	1.0 1.0	1.0 1.0				Category 0
	1. 2. 3.	N. Sweden (ref. Cecil 1970). 60 m length, including a 1 m wide shear zone in mylonite. Crushed mylonite and non-softening clay seams and joint fillings. Intersecting joint set. 2 joint sets plus random, 530 cm spacing. Minor water inflows (<31/min). Wedge shaped roof fall. Headrace tunnel, Vietas Hydro, N. Swedw (ef. Careil 1970).	12.5	6.5	60	Rock bolts, wire mesh and shotcrete	60 6	1.0 6	1.0 2.5	35	1.6	5.6	Category 22 = B I m + \$ (mr) 2.5—5 cm
	1. 2. 3.	N. Sweden (in: Cechi Dio), 50 m length, shear zone in quartzite, "sugar cube" rock structure. Planar, smooth, unaltered joints. 3 joint sets, <5 cm, spacing. 5—10 l/min water inflow. Major roof falls, progressive forma- tion of dome- and vault-shaped crown. Also falls from the face. Headrace tunnel, Rendal Hydro, Norway (ref. Cecil 1970).	8	6	200	Cast concrete arch, immedi- ately after mucking out	20 15	1.0	0.66 5	0.18	1.6	5.0	Category 31 =CCA 2030cm +B 1 m
	1.	25 m length, 3 m wide shear zone in thinly laminated schist, swelling montmorillonitic clay seam in shear zone, some chlorite joint coatings. Planar slickensided joint walls. 1 joint set, 5—30 cm spacing. Ground water seepage along cased de-air hole may have contributed to swelling process. Complete collapse of tunnel during	9	8	110	Original 6-8 cm shotcrete failed. Perma- nent support after failure with cast concrete arches	²⁰ 2	0.5 12	1.0 2.5				Category 31 = CCA (st) 30 cm + B 1 m
	3.	operation of power plant. Vault- shaped crown opening. Tailrace tunnel, Sällsjö Hydro, N. Sweden (ref. Cecil 1970).								0.17	1.6	5.6	
	1. 2. 3.	15 m length, overthrust shear zone in schist, in which there was a 3 cm thick clay (non softening) and gra- phite seam. Shear zone was 50— 100 cm wide and contained smooth, slickensided graphite-coated joint surfaces, 1 joint set, 5—30 cm spac- ing. Insignificant water inflow. Wedge-shaped roof fall. Tailrace tunnel, Bergyattreet Hydro,	6.5	4.5	50	Rock bolts, wire mesh and two shotcrete applications	10 2	1.0 10	1.0 5				Category 31 = B 1 m + S (mr) 5 cm
	1. 2. 3.	N. Sweden (ref. Cecil 1970) 20 m length, 10 m wide vertical shear zone in granite. Rock crushed and frequently altered to earthy- gravel. Some remnant joint surfaces coated with clay (non-softening). Rock adjacent to zone blocky and loose. Irregular slickensided joint surfaces, 5—30 cm spacing. Large water inflows after blasting carried fault zone debris into tunnel, left open voids up to 1 m wide. Note: Tunnel located within 10 km of a major overthrust sheet, locally verti- cal and low angle shear zones occur. Progressive roof fall-out to form a large vault-shaped opening. Headrace tunnel, Stensjöfallet Hydro.	5.9	4.3	100	No support immediately after blasting. Eventually two shotcrete applications	10 20	1.5 6	0.33	0.10	1.6	4.1	Category 34 = S (mr) 7.5 cm

0.	2. 3.	Nature of instability Purpose of excavation, location, reference	SPAN m	Height m	Depth m	Support used	RQD Jn	J _r Ja	J _w SRF	Q	ESR	SPAN/ ESR m	Roof support recommendation
	1.	20 m length, 1 m wide zone of sheared granite with clay seams (non-softening) slide boundary is a thin (<1 cm) clay seam and thinly sheared material that lie in contact with massive rock. Planar, slicken- sided joints. 1 joint set, 5—30 cm spacing. Insignificant inflow of water. See note, case 56.	5.9	4.3	85	Rock bolts, and shotcrete	⁸⁰ 2	0.5 6	1.0 2.5				Category 21 =B 1 m +S 2.5 cm
	2.	Wedge-shaped roof fall.											
	3.	Headrace tunnel. Stensjöfallet Hydro. N. Sweden (ref. Cecil 1970).								1.3	1.6	3.7	
	1.	80 m length, open horizontal sheet- ing joints in granite, partially filled with sand sized material. Planar, rough surfaced joints. 2 joint sets, 5–30 cm spacing. Insignificant water inflow. See note, case 56.	7	4.5	15—20	Rock bolts and shotcrete	70 4	1.5 2	1.0 5				Category 21 = B 1 m + S 2.5 cm
	2.	Overbreak above springline.											
	3.	Access tunnel, Stensjötallet Hydro. N. Sweden (ref. Cecil 1970).								2.6	1.3	5.4	
	1.	50 m length, close vertical jointing cutting across schistose rock struc- ture in schistose metagreywacke. Sandy, gravelly joint fillings. Planar smooth surface joints. 1 joint set plus random (for schistocity planes), 5-30 cm spacing. Water inflows up 1000 l/min.	5.9	4.8	100	Shotcrete	20 3	1.0 2	0.2 1.0				Category 21 =S 2.5 cm
	2.	Large overbreak in intrados, some root falls. Railrace tunnel, Stensjöfallet Hydro. N. Sweden (ref. Cecil 1970).								1.7	1.6	3.7	
	2. 3.	Large overbreak in intrados, some roof falls. Railrace tunnel, Stensjöfallet Hydro. N. Sweden (ref. Cecil 1970). 10 m length, strongly sheared gra-				None				1.7	1.6	3.7	Category 0
	2. 3. 1.	Large overbreak in intrados, some roof falls. Raifrace tunnel, Stensjöfallet Hydro. N. Sweden (ref. Cecil 1970). 10 m length, strongly sheared gra- nite, very tight vertical structure. Planar, rough suffaced, unaltered joints. 1 joint set, 5—30 cm spacing. Insignificant water inflow. Stable, minor overbreak, no roof falls.	8	5.7	15	None	40 2	1.5 1.0	1.0 2.5	1.7	1.6	3.7	Category 0 Note: Very tight structure may im- ply higher stress, i. c. SRF=1.0 Hence Q=30
	2. 3. 1. 2. 3.	Large overbreak in intrados, some roof falls. Railrace tunnel, Stensjöfallet Hydro. N. Sweden (ref. Cecil 1970). 10 m length, strongly sheared gra- nite, very tight vertical structure. Planar, rough surfaced, unaltered joints. 1 joint set, 5—30 cm spacing. Insignificant water inflow. Stable, minor overbreak, no roof falls. Collector tunnel, Mo i Rana Hydro. N. Norway (ref. Cecil 1970).	8	5.7	15	None	40 2	1.5 1.0	1.0 2.5	1.7	1.6	3.7	Category 0 Note: Very tight structure may im- ply higher stress, i. e. $SRF=1.0$ Hence $Q=30$
	2. 3. 1. 3.	Large overbreak in intrados, some roof falls. Railrace tunnel, Stensjöfallet Hydro. N. Sweden (ref. Cecil 1970). 10 m length, strongly sheared gra- nite, very tight vertical structure. Planar, rough surfaced, unaltered joints. 1 joint set, 5-30 cm spacing. Insignificant water inflow. Stable, minor overbreak, no roof falls. Collector tunnel, Mo i Rana Hydro. N. Norway (ref. Cecil 1970). Approx. 2 km length, massive gra- nite, widely spaced, tight, vertical joints. Planar, smooth-surfaced maltered joints. et al.	8	5.7	15	None None in chambers	40 2 2	1.5 1.0	1.0 2.5	1.7	1.6	3.7	Category 0 Note: Very tight structure may im- ply higher stress, i. e. SRF=1.0 Hence Q=30 Category 0,9 = NONE or sb
	2. 3. 1. 2. 3. 1.	Large overbreak in intrados, some roof falls. Railrace tunnel, Stensjöfallet Hydro. N. Sweden (ref. Cecil 1970). 10 m length, strongly sheared gra- nite, very tight vertical structure. Planar, rough surfaced, unaltered joints. 1 joint set, 5—30 cm spacing. Insignificant water inflow. Stable, minor overbreak, no roof falls. Collector tunnel, Mo i Rana Hydro. N. Norway (ref. Cecil 1970). Approx. 2 km length, massive gra- nite, widely spaced, tight, vertical joints. Jianat, smooth-surfaced unaltered joints. 1 joint set, 1—3 m pacing. Insignificant water inflow. No overbreak in chambers, but	8	5.7	15 ≤100	None None in chambers	40 2 100 2	1.5 1.0 1.0	1.0 2.5 1.0 1.0	1.7	1.6 1.6	3.7 5.0 9.2	Category 0 Note: Very tight structure may im- ply higher stress, i. e. $SRF=1.0$ Hence $Q=30$ Category 0,9 = NONE or sb Category 14 _B 1 $\leq -2m$
	2. 3. 1. 2. 3. 1. 2. 3.	Large overbreak in intrados, some roof falls. Railrace tunnel, Stensjöfallet Hydro. N. Sweden (ref. Cecil 1970). 10 m length, strongly sheared gra- nite, very tight vertical structure. Planar, rough surfaced, unaltered joints. 1 joint set, 5—30 cm spacing. Insignificant water inflow. Stable, minor overbreak, no roof falls. Collector tunnel, Mo i Rana Hydro. N. Norway (ref. Cecil 1970). Approx. 2 km length, massive gra- nite, widely spaced, tight, vertical joints. Planar, smooth-surfaced unaltered joints. 1 joint set, 1—3 m spacing. Insignificant water inflow. No overbreak in chambers, but overbreak at intersections. Waste water treatment plant, Käppala. Sweden (ref. Cecil 1970).	8	5.7	15 ≤100	None in chambers Bolts at intersections	40 2 100 2 × 3	1.5 1.0 1.0 1.0 1.0	1.0 2.5 1.0 1.0 1.0	1.7 12 50	1.6 1.6 1.3 1.0	3.7 5.0 9.2 12.0	Category 0 Note: Very tight structure may im- ply higher stress, i.e. SRF=1.0 Hence Q=30 Category 0,9 =NONE or sb Category 14 = B 1.5-2 m + clm
	2. 3. 1. 2. 3. 1. 2. 3. 1.	Large overbreak in intrados, some roof falls. Railrace tunnel, Stensjöfallet Hydro. N. Sweden (ref. Cecil 1970). 10 m length, strongly sheared gra- nite, very tight vertical structure. Planar, rough surfaced, unaltered joints. I joint set, 5-30 cm spacing. Insignificant water inflow. Stable, minor overbreak, no roof falls. Collector tunnel, Mo i Rana Hydro. N. Norway (ref. Cecil 1970). Approx. 2 km length, massive gra- nite, widely spaced, tight, vertical joints. Planar, smooth-surfaced unaltered joints. 4 intersections. Waste water treatment plant, Käppla. Sweden (ref. Cecil 1970). 300 m length, massive greis, few joints. Planar, rough-surfaced, un- altered joints 3 m spacing. Insign of the system of the system of the system of the system Käppla. Sweden (ref. Cecil 1970).	8	5.7	15 ≤100	None in chambers Bolts at intersections 50 spot bolts in about 300 m of chamber	40 2 100 2 × 3 100	1.5 1.0 1.0 1.0 1.0 5	1.0 2.5 1.0 1.0 1.0	1.7 12 50 16.7	1.6 1.3 1.0	3.75.09.212.0	Category 0 Note: Very tight structure may im- ply higher stress, i.e. $SRF=1.0$ Hence $Q=30$ Category 0,9 = NONE or sb Category 14 = B 1.5-2 m + clm Category 0,5
	2. 3. 1. 2. 3. 1. 2. 3. 1. 2. 3.	Large overbreak in intrados, some roof falls. Railrace tunnel, Stensjöfallet Hydro. N. Sweden (ref. Cecil 1970). 10 m length, strongly sheared gra- nite, very tight vertical structure. Planar, rough surfaced, unaltered joints. I joint set, 5-30 cm spacing. Insignificant water inflow. Stable, minor overbreak, no roof falls. Collector tunnel, Mo i Rana Hydro. N. Norway (ref. Cecil 1970). Approx. 2 km length, massive gra- nite, widely spaced, tight, vertical joints. Planar, smooth-surfaced unaltered joints. 4 information. No overbreak in chambers, but overbreak at intersections. Waste water treatment plant, Käppala. Sweden (ref. Cecil 1970). 300 m length, massive gneiss, few joints. Planar, rough-surfaced, un- altered joints 3 m spacing. Insig- nificant water inflow. Minor overbreak, no falls or slides.	8 12 20	5.7	15 ≤100	None in chambers Bolts at intersections 50 spot bolts in about 300 m of chamber	40 2 100 2 × 3 100 1.0	1.5 1.0 1.0 1.0 1.0 5 1.0	1.0 2.5 1.0 1.0 1.0 1.0 2.5	1.7 12 50 16.7	1.6 1.3 1.0	3.75.09.212.0	Category 0 Note: Very tight structure may im- ply higher stress, i.e. SRF=1.0 Hence Q=30 Category 0,9 =NONE or sb Category 14 =B 1.5-2 m + clm Category 0,5 = None or sb

Note : Kign Root Support es 11, 12, 13, and

Key: S = shotcrete, B = systematic bolting, sb = spot bolting, CCA = cast concrete arches, mr = mesh reinforced, sr = steel reinforced, clm = chain link mesh.

Bolt spacing is given in metres. - Shotcrete or concrete thickness is given in centimeters.

218

Key: S = shotcrete, B = systematic bolting, sb = spot bolting, CCA = cast concrete arches, mr = mesh reinforced, sr = steel reinforced, clm = chain link mesh. Bolt spacing is given in metres. - Shotcrete or concrete thickness is given in centimeters.

Table 9. Classification and Prediction of Support for Six of the Case Records Described by Cecil (1970)

Case No.	1. 2. 3.	DESCRIPTION OF ROCK MASS Nature of instability Purpose of excavation, location, reference	SPAN m	Height m	Depth m	Support used	RQD Jn	J _r Ja	J _w SRF	Q	ESR	SPAN/ ESR m	Roof support recommendation
60	1.	20 m length, 1 m wide zone of sheared granite with clay seams (non-softening) slide boundary is a thin (<1 cm) clay seam and thinly sheared material that lie in contact with massive rock. Planar, slicken- sided joints. 1 joint set, 5—30 cm spacing. Insignificant inflow of water. See note, case 56.	5.9	4.3	85	Rock bolts, and shotcrete	⁸⁰ 2	0.5 6	1.0 2.5				Category 21 = B 1 m + S 2.5 cm
	2.	Wedge-shaped roof fall.											
	3.	Headrace tunnel. Stensjöfallet Hydro. N. Sweden (ref. Cecil 1970).								1.3	1.6	3.7	

SUMMARIZED DETAIL OF ONE OF CECIL, 1970 CASE RECORDS – AND Q-SYSTEM INTERPRETATION

ysuem uneversepturem in 1972 consistent of 4, 5 and finally of anneters. Copy of 5-parameter version. (unpublished)	D <u>ROCK MASS STRUCTURE</u> Description Jn A. Massive, no or few joints. 1 B. One joint set. 2 C. One joint set. 2 C. One joint set plus random. 3 D. Two joint sets. 4 F. Three joint sets plus random. 6 F. Three joint sets plus random. 9 H. Crushed rock or earth-like, 12 DINT ROUGHNESS NUMBER Description Jr A. Rough, undulating 4 B. Smooth, nearly planar 1 D. Smooth, flat, slickensided ½ E. Any clay zone thick enough 1 (nominal) hearty to some the source with 1 (nominal) hearty to some the source of th	(4) STRESS KEDUCTION FACTOR (1) Clay occurrences, causing loose rock A multiple clay occurrences, very loose surreauxing reck. B. Weskings some containing clay Depth of exavation < 50m. C. Weskings some containing clay Depth of exavation < 50m. Depth of exavation < 50m. C. Weskings some containing clay Depth of exavation < 50m. Description C. Weskings some containing clay Description Description Description C. Weskings and containing clay Description Description Description C. Weskings and containing clay Description Description Description C. Weskings and containing clay Description C. Storage rooms, minor road and C. Storage rooms, minor road and D. Power schims, major road and D. Power schims, major road and D. Power schims, schims, sports and public facilities, O: BOLT AND ANCHOR LENGTHS ROOF: bolts $\ell = 2+0.15$ B (B = span) anchors $L = 0.40$ B WALLS: bolts $\ell = 2+0.15$ H (H=wall height)
SPAN (B)m. x(<u>±,</u>) nubur 1 N u + v + vado 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	F. Weakness sours calaims G-9 ([2-12-)] (ii) Weakness sours with their class cars G. Surgering and the heir class cars G. Surgering and the heir class cars G. Surgering and the heir class cars (iii) V. POOR POOR POOR POOR POOR THE POOR THE POOR POOR THE POOR POOR THE POOR THE POOR POOR THE POOR POOR THE POOR THE POOR POOR THE POOR THE POOR POOR THE POOR THE POOR POOR THE POOR THE POOR THE POOR POOR THE POOR	$\begin{array}{c c} \hline & & & & & & & & & & \\ \hline & & & & & & &$

An early version of 'Q' in 1973 (Note: RQD assumed – obviously)

RQD HAS A PERMANENT ROLE IN Q, QTBM, Q slope, Q H2O

 $Q = \frac{RQD}{Jn} \times \frac{Jr}{Ja} \times \frac{Jw}{SRF}$ Joint Field Intact Rock Persistence Stresses Strength (Length) Joint Joint 0 Spacing Ground-water Orientation 0 Drill Core Quality (Fracture Joint Contour Joint Density) (Shape) Aperture and * Surface Condition

Hutchinson and Diederichs, 1996

SO WHAT IS THE 'Q-system' ?

Hellenic Society Soil Mech./Geotech.
engineers may not be familiar with 'Q'

As a briefest introduction:

Q means *rock mass quality*. Q consists of *ratings for six parameters*.

 $Q = \frac{RQD}{J_n} \times \frac{J_r}{J_a} \times \frac{J_W}{SRF} = \text{('Block size') x ('friction') x ('active stress')}$

BRAZILIAN HYDROPOWER PROJECT COLLAPSE IN FAULT LOWEST END OF THE ROCK MASS QUALITY SCALE. $Q \approx 10/20 \times 1/8 \times 0.5/20$ i.e. < 0.001 SUGAR LOAF MOUNTAIN, RIO DE JANEIRO

TOP END OF ROCK MASS QUALITY SCALE.

Q ≈ <u>100</u>/0.5 x 4/0.75 x 1/1

i.e. >1000

THE FIRST TWO PAIRS OF PARAMETERS HAVE DIRECT PHYSICAL MEANING:

RQD / Jn = relative block size

Jr / Ja = frictional strength ($\approx \mu$)

Jw / SRF = effects of water, faulting, strength/stress ratio, squeezing or swelling (an 'active stress' term)

Q-classes with respective RQD distributions and Q-ranges: 0.1-1, <u>1-4</u>, 4-10, 10-40 (part of 340 km of core logging at mine, by 12 to 15 engineering geologists)

Demonstrates central role played by RQD in

(>40 km of core)

I	ROCK	M	ASS STRUCTURE			
1	RQD	De	ere et al., 1967)	block	1	Q
2	J _n	=	joint set number	size	l	Q
3	F	=	joint frequency (per metre)			
4	Jv	=	volumetric joint count (Palmst	röm, 1982)	
5	S	=	joint spacing (in metres)			
6	L	=	joint length (in metres)			
7	w	=	weathering grade (ISRM, 1978	3)		
8	α/ß	=	dip/dip direction of joints (Sch	midt diag	ran	n)
II	JOINT	C	HARACTER			
9	J _r	=	joint roughness number	shear	ſ	Q
10	Ja	=	joint alteration number	strength	1	Q
11	JRC	=	joint roughness coefficient			
12	a/L	=	roughness amplitude of asperit length (mm/m)	ies per un	it	
13	JCS	=	joint wall compressive strength	1		
14	$\phi_{\rm r}$	=	residual friction angle			
15	r,R	=	Schmidt rebound values for joi surfaces	int and roo	k	
ш	WATE	ER,	STRESS, STRENGTH			
16	Jw	=	joint water reduction factor	active	1	Q
17	SRF	=	stress reduction factor	stiess	1	Q
18	K	=	rock mass permeability (m/s)			
19	σ_{c}	=	compressive strength			
20	σ_1	=	major principal stress			

Q IS ONLY PART OF A ROCK MASS **DESC**-**RIPTION EXERCISE**

RQD is frequently the most variable parameter

Q-slope

Q-SLOPE METHOD (Barton and Bar, 2015)

Q-slope = 0.01 : slope angle $\approx 25^{\circ}$ Q-slope = 0.1 : slope angle 45° Q-slope = 1.0 : slope angle 65° Q-slope = 10 : slope angle 85°

Case Study 3: Q-slope mining application

Local	RQD (%)	Jn	Jr	Ja	0-factor	Jwice	SRFa	SRFb	SRFc	Q-slope	β (slope angle °)
1	10-25	6	1	4	0.5	0.5	2.5	1	N/A	0.0729	42
2	10-25	6	1	3	0.75	0.5	2.5	2	N/A	0.1458	48
3	25-50	9	2	3	0.75	0.5	2.5	2	N/A	0.4166	57

- RQD improves with depth
- Orientation factor improves with depth (bedding)

Note AR estimation for 24 hrs, 1 week, 1 month

Important to use RQD as a directional parameter (when needed)

Figure A20. Locations U1 to U8. Sofiemvr, mostly near Brannstasion,

A selection of the 300+ locations which were Q-logged

Re	Location	n: T	UNNE	FL-S	OUT /	ĺ	Depth	/ chair	age:	Shift all the state of the stat		Date:	30.8.09
Con	JBV		ASLA	ND-1	LANGI	tus	ROCI	KEXI	POSURE	ES L	OGGED	Page:	40
Numbers	Q (typic	cal ran	ige) = [0.1-	-100] Q(mean)	= ///	1		Q (most	freq.) =	11.0
tor	(75-	-100)X(-	1-4	-)x(-	0.5-1.0		78)X	1.7)X(0.7	75)	(100)	X(1.5	-)X(<u>0.66</u>)
core	· 4 1-	Ve	ry Poor		Poor		1	Fair		Goo	d I	Exc.	/
boxes,	Z			ann anns a' fhean seannach an t-	2	6	13	46	123	297	2 650	4807	
tunnel	TSI					-	1	1	631	12 14 9	1 29 40 20 2	2 2/3 240	RQD %
lengths	VWX-						2	<u>ZZ</u>	366	14 13 13	3 28 27 3 2	25 222 218	Core pieces
	7577					3 1	5 2	8 3 3	447 1157	17 13 11	4 27 31 36 1	99216208	<u>≧ 10 cm</u>
	728232-				1	1	347	43	197	11 141	2327292	135 18/219	
(under-	112/0240						1	1	24	8 11	23 34	147220	
line, or	132 L	4	0 0	0 0	0 4	0 5	1	1	4	13	34 1	87	
specify)	0		0 2	0 3	4	0 3	0 0	0 /	0 8	0	90 100	0 100	
411 0.0.	5	Eann	Four	576	2966	1426	1W0	47	One	na international and a second	None		
all areas	HQR		52	11 = 8	152.45 48	51 61 70	6 93 34	19					
log ged	TSU	a an anna an canadairean	8 56	14 14 35	170 116 165	61 83 12	17322	15	10				J _n
for T-S.	Y 52 7/		8 11 7	21 26 27	87 154 119	91 60 92	33 16 25	3					Number of
	7 67 22		19 11 15	42 35 27	122 99 194	68 73 32	19 50 Z	Z					joint sets
1=	11210747		16 15 25	31 1928 17 32.42	71 191 148	47 48 61	13 2 7	3					
	12292		32	11 35	91 153	59 46	16 4	3		na an an ann an taoin a bar ann an dathar			
2=	DZ L	20	15	12	9	58	A	2	2	4	0.5		
	Г	Fille	10	16	Dianar	0		Indulatir	20	1			
3=	\leq	46			496	3675	2	1240	430		1/9		
	HQR	Z			24713	136171 70		35 32 60	175 IZ		1/ 10		J.
1-	TSUL	4 5			261714	184 159 166	2	92 62 69	16 35 13		3 11		Joint
Finds inters	Y 52 YY	5			24 20 22	167 153 17	8	30 70 47	8 27 19		11 3 4		roughness
	76727	10 4		eurjanska Notesu Insama	16 28 27	166 133 19	<u> </u>	63 56 31	10 29 14		520		- least
5=	11210242	226			13 44 27	88 189 135		3Z 3080	17.5 22		8		favourable
	12292				5 22	79 184		70 41	21 23		5		
6=	ISE L	1.0	1	0.5	1	1.5	1.5	2	3		4		

Summing the raw data

Input-data screen for assumed Class 1 rock mass

Q - VALUES:	(RQD	/	Jn)	*	(Jr	/	Ja)	·) *	٨L	/	SRF)	П	ø
Q (typical min)=	75	-	15.0	*	1.0	-	5.0	0 *	50	/	1.0	0 II	.500
Q (typical max)=	100	/	4.0	*	4.0	_	1.0	*	00	/	1.0	=	00.0
Q (mean value)=	98	_ _	8.4	*	1.7	_	1.3	0 *	.75	-	1.0	"	1.07
Q (most frequent)=	100	_	9.0	*	1.5	_	1.0	o *	.66	/	1.0	-	1.00
B 600	OOR		POOR			FAIR		0g	B	┝	С.		
L 5000			\parallel	++	+	+	+	+		+		ROD	%
30000			+	_	+		+	_	_	+		ore piec	es
K 2000				⊢	╟	┼┼				┼┼┏		= 10 cm	
10		0	9 9 9	4	50	09	- 10 20	80	06		100	-	
S 400 EARTH	FOUR		THRE			OMT		ONE		ΞĬ	NE		
3000		+	-							+		-	
L 2000			Ŧ		Τ							lumber o	L.
S 1000		╇								+		oint sets	
20	15			0	ω	4	۳ ۱	N	- T	╉	0,5		
PILLS FILLS			PLANAR				UNDULA	TING		DIS			
T 4000												-	
A 3000								\square					
(φ _r) 1000											5 2 -	ount oughnes	ş
00	_			-				_				least	
and	0	5,5	~		1,5	<u>د</u>	10	N	с		4		
6000	THICK	(FILL	0		É	HN FILL	S	COATED	UNFIL	LED	HEA	_	
A -	+			+				╀				-	
N 3000	H	Ш	\square	\mathbb{H}		Ħ		╟				oint	
(φ _p) 2000		\square		╫		$^{++}$		╫	Ш		- m	lteration least	
00	+			-		Ť	4				Ī		
20	13 12	10	8	5	12	∞	6 4	4	2	-	0,75		
A 500	EXC. IN	FLOM	S	Π	HGH	HPRES	SURE	MEI		DR	Γ	_	
- C + 4000	╈		╀			Τ			┢		T	_	
3000	┢		\vdash					F				oint	
F 4	+		+							4		rater ressure	
000	05	0.1	$\frac{1}{2}$	0.2	Ö	۳ ۳	0.5	0.0	90		Ī_]
S	EZE	SWE		FAU	LTS		STRE	SS/STRE	ENGTH				
T A													
H 4000												tress	
S 2000												eduction	
20	5 10 5	20	5 10 5	10 7	5 5 2.	5 400 2	00 100 50	20 10	5 2	0.5 1	2.5]
								Rev.		æ	eport No.	Цġ	ure No.
JBV	OSLO-	SKI									NB&A #	1 2 5	10
Q-histogram based	on corr	alidu	tion of	all ro	ock-ex	nsod	e	Rock	slope	<u>ت</u> م		ο Π	е 1.8.09
								Depth zo	one (m)	Ō	hecked		<
logging for TUNNEI	-SOUT	Ц Ц	herefo	Le e)	kcludir	lg co	e	ne	ar-surfa.	9 8	nrb		
and weakness zone	SS.									-	5)))))	*	

Q - VALUES:	(RQD / Jn) * (Jr /	Ja) * (Jw /	SRF) = Q
Q (typical min)=	10 / 20.0 * 1.0 /	8.0 * 0.50 /	5.0 = 0.006
Q (typical max)=	100 / 3.0 * 3.0 /	1.0 * 1.00 /	1.0 = 100.0
Q (mean value)=	67 / 11.2 * 1.6 /	3.5 * 0.62 /	1.5 = 1.16
Q (most frequent)=	95 / 12.0 * 1.5 /	2.0 * 0.66 /	1.0 = 3.92
B 25 V.	POOR POOR FAIR	GOOD	EXC
L 20			ROD %
12 12 C C C			Core pieces
A S S			>= 10 cm
10	20 30 40 50 60	70 80 90	100
C C EARTH	FOUR THREE TWO	ONE	VONE
0 30 			
Z 20			J J
Ш с			Number of ioint sets
02 02			
20	15 12 9 6 4	3 2 1	0,5
	DIANAD		
T 40 1111			
A 30			Jr
N 20			Joint
(Ψr) 10			-least
and 00	0.5 1.5 1.5	3	4
	THICK FILLS	COATED UNFILLED	HEA
T 40			
A 30			Ja
N 20			Joint
(Φ _p) 10			-least
50	3 12 10 8 6 5 12 8 6	4 4 3 2 1	0,75
A 60	EXC. INFLOWS HIGH PRESS	URE WET D	۲۲
C 20			-
T 40			
V 20			Joint
Щ - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10			pressure
0.0	5 0.1 0.2 0.33	0.5 0.66	-
S 80	EZE SWELL FAULTS	STRESS/STRENGTH	
- 2			SRF SRF
E 40			Stress
د S 20			reduction factor
- 00 ∧			
20 15	10 5 20 15 10 5 10 7.5 5 2.5 400 200	100 50 20 10 5 2 0.5	1 2.5 Donort No Eigene No
JBV	OSLO-SKI	· · DD	NB&A #1 AA8
		Borehole No. :	Drawn by Date
Q-histogram trend:	s for selected core with weakness	Cones Seven holes	NB&A 1.9.09 Checked
or faults: aggregat	e of seven holes.	Range 18-1 44m	nrb
			Approved

Q_c	0.1	1	10	100	
Lugeon	10	1	0.1	0.01	
$K(m/s) \approx$	10 ⁻⁶	10-7	10-8	10-9	
V _p (km/s)	2.5	3.5	4.5	5.5	
					No clay present:
					$L \approx 1/Q_c$
Тур	ical tre	ends			For hard, jointed, clay-free, rock masses)
(of	perme	ability)		(1 Lugeon $\approx 10^{-7}$ m/s $\approx 10^{-14}$ m ² for water at 20°C)
if no	o clav	•			
	o ciay.				$Q_{c} = RQD/Jn \times Jr/Ja \times Jw/SRF \times \sigma_{c}/100$
					(standard equation, normalized by $\sigma_{c}/100$)
					(,
					General case, with or without clay, with depth
					or stress allowance, and consideration of
					joint wall strength JCS
					Q _{H2O} = RQD/ <u>Jn</u> x <u>Ja/Jr</u> x <u>Jw</u> /SRF x 100/JCS
					K ≈ 0.002 /(Q _{H20} D ^{5/3}) m/s

USUAL RANGE OF K at DAM SITES

Example of Q_{H2O} estimation: Weak, well-jointed rock at 100 m depth with a low assumed joint-wall-compression-strength JCS of 10 MPa:

Regular Q-value =

 $\frac{50}{9} \times \frac{1.5}{4} \times \frac{0.66}{1}$ = 1.4, i.e. 'poor quality' $Q_{H_{20}} = \frac{50}{9} \times \frac{4}{1.5} \times \frac{0.66}{1} \times \frac{100}{10} = 98$ $K \approx \left(\frac{2}{1000 \times 98 \times 100^{\frac{5}{3}}}\right) = 9 \times 10^{-9} \text{ m/s}$

(Quite low permeability despite the extensively jointed nature of this rock mass, due to nearly closed, compressible, clay-coated joint walls).

(Barton, 2006)

Attempts at an integrated rock-mass model (RQD is of course embedded in Qc)

RQD and seismic velocity Vp

Sjøgren et al. 1979: RQD/Fm-1/Vp NB added Q-value scale, 1995: hard rocks. (120 km ref. seis., 2.2km core)

Below: NB, 1995: general case

HOEK-BROWN GSI-BASED ESTIMATION

(AN ALTERNATIVE, WITH **RQD** INCLUDED)

$$E_m(GPa) = \left(1 - \frac{D}{2}\right) \sqrt{\frac{\sigma_{ci}}{100}} \times 10^{(GSI-10)/40}$$

$$\sigma'_{cm} = \sigma_{ci} \times \frac{(m_b + 4s - a(m_b - 8s))}{2(1 + a)} \frac{(m_b/4 + s)^{a-1}}{2(1 + a)}$$

$$\varphi' = a \sin \left[\frac{6am_b(s + m_b\sigma'_{3n})^{a-1}}{2(1 + a)(2 + a) + 6am_b(s + m_b\sigma'_{3n})^{a-1}}\right]$$

$$C' = \frac{\sigma_{ci}[(1 + 2a)s + (1 - a)m_b\sigma'_{3n}](s + m_b\sigma'_{3n})^{a-1}}{(1 + u)(2 + a)\sqrt{1 + (6am_b(s + m_b\sigma'_{3n})^{a-1})/((1 + a)(2 + a))}}$$

where

$$\sigma_{3n} = \sigma'_{3 \max} / \sigma_{ci} (+GSI + a + s + m_b \text{ relations})$$

$$E_m \approx 10 \times Q_c^{1/3}$$

$$\sigma_{cm} \approx 5\gamma Q_c^{1/3}$$

$$\varphi \approx \tan^{-1} \left(\frac{J_r}{J_a} \times \frac{J_w}{1} \right)$$

$$c \approx \left(\frac{RQD}{J_n} \times \frac{1}{SRF} \times \frac{\sigma_c}{100} \right)$$

FOR THOSE WHO ARE SUSPICIOUS OF <u>BLACK-BOX</u> <u>EQUATIONS</u> – THERE ARE TRANSPARENT ALTERNATIVES.....also with RQD! CC and FC from $Q_c = Q \times \sigma_c / 100$: Cut Q_c into two halves $\rightarrow c'$ and ϕ'

 $Qc = RQD/Jn \times Jr/Ja \times Jw / SRF \times \sigma c / 100)$

<u>CC = cohesive strength</u> (the component of the rock mass <u>requiring shotcrete</u>)

<u>FC = frictional strength</u> (the component of the rock mass requiring bolting).

$$FC = \tan^{-1} \left(\frac{Jr}{Ja} \times Jw \right)$$

RQD	J _n	J _r	Ja	J _w	SRF	Q	σ _c	Q _c	FC•	CC MPa	V _p km/s	E _{mass} GPa
100	2	2	1	1	1	100	100	100	63 °	50	5.5	46
90	9	1	1	1	1	10	100	10	45 °	10	4.5	22
60	12	1.5	2	0.66	1	2.5	50	1.2	26 °	2.5	3.6	10.7
30	15	1	4	0.66	2.5	0.13	33	0.04	9 °	0.26	2.1	3.5

Four rock masses with successively reducing character: *lower RQD*, more joint sets, more weathering, lower UCS, more clay.

Low CC –shotcrete preferred

Low FC – bolting preferred

